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In this paper we derive the expanded forms for the transfer matrices across 

an arbitrary two-dimensional fringe-field, i.e. the field is independent of the 

coordinate along the magnet edge. 

The Coordinates 

, 
(5 

magnet edge 
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The field on the mid-plane is written as 

1 1;=0 
B(r) = Bob(c) b(c) = 

0 <=R 
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where R is a measure of the "thickness" of the fringe-field. Ne also have the fol- 

lowing relations between differentials 

dg = dr case = dx sine (2) 

where 8 = e(z;) = angle between z and G-axes and is given by 

1 bdg d++--- 
00 PO case 

or, when integrated 

5 
sine = sin0o +$ 

I 
W (3) 

0 
0 

where Boo0 is the magnetic rigidity of the particle. The total variation of 

8 in the fringe-field is generally small. In the following we shall simplify 

computation by assuming 0 to be constant having the value at the "equivalent 

bending edge" located at 5 = L = 
I 

R 
bdg. The normally used "hard edge" angle e 

0 
is defined by 

I 
R 

sin6 = siWo+ J- 

po 0 

bdg. 

The angle 8 we use here is given by 

t 
sine = sineo+ 1 

I po 0 
W 

= sini _ 1 
I 
R 

PO 
W 

L 

or, since the difference between 8 and 6 is generally small, it is given 

approximately by 

8 = s- 1 J1; 
p, case I 

bdy. 

L 

(4) 

(5) 

(6) 

Iterative Solutions of the Linear Orbit Equations 

The linear orbit equations are 
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xl'-mx = 0, y"-ny = 0 (prime = 
ii-) (7) 

where 

1 m = _- 
BP 0 0 

aB 1 sine i -,-= -- - 
ax 

P2 PO 
+ b2 

PO 

and 

1 aB sine t; d 
n=iQqK= p, (dot = =). 

To solve the equation x" = mx by iteration we have: 

1. First order 

Putting x = x(i: = 0) = x0 in the right-hand-side and integrating 

we get 

I 
xl' = mx 

0 

x' = x o'txo /mdz 

X = xo+xo~z+xo J/' mdz2 

where we used the short hand notation 

/I mdz2 E " dz2 m(z,) 
0 

etc. 

2. Second order 

Substituting the first order x from Eq. (10) in the right-hand-side 

and integrating we get 

f 
x” = xomtxo'mz+xom /Jmdz2 

I 

x’ = x0 'txo fmdztxo' /mzdz+x, lmdz j'/mdz2 

X = xo+xo'z+xo jJmdz2+xo' /j'mzdz2 

+x0 J/mdz2JJmdz2 

(8) 

(9) 

(10) 

(11) 

(12) 
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The regularity is now clear and we can write for the x-transfer matrix 

/‘Ml 1 
M =; 

\M ': 21 

(13) 

M11 = l+l/mdz2+jlmdz2Jjmdz2+.*.. 

Ml2 = zt/~mzdz2tjjmdz2~~mzdz2+.*** 

M21 = O+/mdz+]mdzj/mdz2+.~~* 

M22 = ltjmzdz+jmdzj/mzdz2+~~*. 

where the terms in the elements of M are vertically lined up according to the 

generic order (power of m). When applied to the fringe-field at a magnet edge, 

however, they should be ordered by the power of the "softness" parameter and the 

terms should be realigned as 

i 

Ml1 = lt j/mdz2t //mdz2 jjmdz2t.s-. 

Ml2 = 0 t z t~~mzdz2 -I----* 

M21 =imdz+/mdz‘j/ mdz2+j mdz/jmdz'/j mdz2t.... 

M22 = l+/mzdztjmdz J/mzdz2t**** 

(14) 

i.e. when !?A (hard edge) M becomes 

Transfer Matrices 

The calculation of the elements of the transfer matrices across the fringe- 

field from 5 = 0 to 5 = R is straigthforward. We shall give only a few examples 

below. 
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lmdz = -@(k ’ 2 b d< 
fringe o 

i 
field 

= tan* -- 
pO 

field 

' b2d< 
0 

< 

lmzdz = -ptE:ie 

fringe O 

21 

pO 
field 

' ' 
bgdz;+$& 

0 0 

(15) 

field , 
I 
I 

= tan* p. c0se -"(Lx)2[--$,; dg ,l t&d+&+\: dT; 1; b2<d$]. 

We shall now simply exhibit the total result. 

1. Horizontal transfer matrix M 

Ml1 

PO Ml2 = tane E C 1-c(bl+bllh)+] 

tan6 r -- 
M21 = p, _ ,(cl+cllh)-E(C2+c21XCC22X2) 

+E2(c3tc31Xtc32h2tc33A3)t.* 0. 1 
M22 = l-c(dltd,lh)t~2(d2td21~td22~2)t~~~~ 

(16) 
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where 

- R tane 
&=PgCDSe , Ad&, 

pO 

and &- 
PO 

may be considered as the "softness" parameter. The numerical coefficients 

are given by: 

/ 
: a1 =;//b 

i 
a22 = -j ff b2 /I b2 

i c22 =-$f b2 /I b2 
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b2 /l b2 (1 b2 

where we have omitted all dg and where the limits of integration are as exemplified 

by the coefficients explicitly exhibited in Eqs. (15). 

The simplest is the linear fringe-field given by 

b=l-& and ;,=-;a 
For this we have, to c2 terms 

r al=-;, b, =-;9 cl =-1, 

all =t, bll =&)9 Cl1 =;9 

a2 =&9 b2 = & 9 c2 = ; , 
< 

13 
a21 = 360 Y b21-= 2;;0 3 czl = -& , -- -- 

1 az2 = - b22 
1 

=imP 
1 

160 ' c22 = 84 ' 

(18) 

t d,=-; 

dll =& 

d2 = & 

d21 = 3;o 
-- 

(19) 

I -- 
d22 = 672 

L c3=-&, c31 = & 9 c32 = ggiio 9 
1 -- c33 = - 

7392 l 

2. Vertical transfer matrix N 

Without the centripetal term 1 in n the vertical transfer matrix is 
P2 

considerably simpler and is given by 

N= 

(Cltc2~tc3~2t*-**) ltd,E+d2E2+-~- 
(20) 
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where the coefficients are as given in Eqs. (17) and (19). 

Conventionally one continues the magnet interior matrix to the "equivalent 

bending edge", multiplies it by an "equivalent edge matrix", then continues with the 

drift (field-free) matrix from the equivalent edge onward. In this case the 

"equivalent edge matrices" are then, for a dipole edge 

horizontal 

L . 
cosPo case -0 s1npo 

-IL sin L L 

PO PO case cospo case 

The case of the three-dimensional fringe-field, i.e. B = B(c,<) = B,b(c,c) 

will be treated in a separate report. 


